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Minimum spanning tree (MST)

Input: A connected, undirected graph
G = (V, E) with positive edge
weights.

Output: A subset of edges E' C E of
minimum total weight such that

the graph (V, E’) is connected.



Minimum spanning tree (MST)

Input: A connected, undirected graph
G = (V, E) with positive edge
weights.

Output: A subset of edges E' C E of
minimum total weight such that

the graph (V, E’) is connected.

Remark

The set E’ always forms a tree.



Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.



Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.

m A tree on n vertices has n — 1 edges.



Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.

m A tree on n vertices has n — 1 edges.

m Any connected undirected graph

G(V,E) with |[E| = |V| —1is a tree.



Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.

m A tree on n vertices has n — 1 edges.

m Any connected undirected graph
G(V,E) with |[E| = |V| —1is a tree.

m An undirected graph is a tree iff there is
a unique path between any pair of its
vertices.
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This lesson

Two efficient greedy algorithms for the

minimum spanning tree problem.



Kruskal's algorithm
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Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.
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Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

cut property states that X + {e} is also a part of
some MST



Proof

graph G




Proof

subset X C E of some MST T



Proof

partition of V into Sand V —§



lightest edge e between S and V — §



we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST



if e € T then there is nothing to prove; so
assume that e ¢ T



consider the tree T



adding e to T creates a cycle; let € be an
edge of this cycle that crosses S and V — §



Proof

then 7" = T — {€'} + {e} isan MST
containing X + {e}: itis a tree, and
w(T") < w(T) since w(e) < w(e)
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Kruskal's Algorithm

m Algorithm: repeatedly add to X the next
lightest edge e that doesn't produce a
cycle

m At any point of time, the set X is a
forest, that is, a collection of trees

m The next edge e connects two different
trees—say, T1 and T,

m The edge e is the lightest between T,
and V — Ty, hence adding e is safe



Implementation Details

use disjoint sets data structure
initially, each vertex lies in a separate set

each set is the set of vertices of a
connected component

to check whether the current edge

{u, v} produces a cycle, we check
whether u and v belong to the same set



Example




Kruskal(G)

for all we V:
MakeSet(v)
X < empty set
sort the edges E by weight
for all {u,v} € E in non-decreasing
welght order:
if Find(u) # Find(v):
add {u,v} to X
Union(u, v)
return X



Running Time

m Sorting edges:

O(|Ellog|E[) = O(|E[log |V ) =
O(2|E|log|V]) = O(|Elog |V])

m Processing edges:

2|E| - T(Find) + |V| - T(Union) =
O((IE|+|V])log|V]) = O(|E|log|V])

m Total running time: O(|E|log |V])
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Prim’s Algorithm

m X is always a subtree, grows by one
edge at each iteration

m we add a lightest edge between a vertex
of the tree and a vertex not in the tree

m very similar to Dijkstra’s algorithm



Example




Prim’s Algorithm
Prim(G)

for all we V:
cost[u] < oo, parent[u] < nil
pick any initial vertex up
cost[up] < 0
PrioQ <— MakeQueue(V) {priority is cost}
while PrioQ is not empty:
v < ExtractMin(PrioQ)
for all {v,z} € E:
if z € PrioQ and cost[z] > w(v, z):
cost[z] < w(v,z), parent[z] < v
ChangePriority(PrioQ, z, cost[z])



Running Time

m the running time is

|V|-T(ExtractMin)+|E|- T(ChangePriority)
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Running Time

m the running time is

|V|-T(ExtractMin)+|E|- T(ChangePriority)

m for array-based implementation, the running

time is O(|V|?)

m for binary heap-based implementation, the
running time is

O((IVI+ |E]) log |V]) = O(|Elog |V])



Kruskal:

Prim:

Summary

repeatedly add the next lightest
edge if this doesn't produce a cycle;
use disjoint sets to check whether
the current edge joins two vertices
from different components

repeatedly attach a new vertex to
the current tree by a lightest edge;
use priority queue to quickly find
the next lightest edge
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