Spanning Trees:
Efficient Algorithms

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg
Russian Academy of Sciences

Graph Algorithms
Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

@ Building a Network

Connecting Computers by Wires

Connecting Computers by Wires

Sk
v AN
$1/$6

o e
f——F§0

Connecting Computers by Wires

S——F
v AN
$1/$6

o e
f—F§

Connecting Computers by Wires

S——F
i AN
$1/$6

o e
f—F§

Building Roads

A A

Building Roads

A—A

2 2

ﬁ\h\ ()

L w
A—A A

\7\

&

Minimum spanning tree (MST)

Input: A connected, undirected graph
G = (V, E) with positive edge
weights.

Output: A subset of edges E' C E of
minimum total weight such that

the graph (V, E’) is connected.

Minimum spanning tree (MST)

Input: A connected, undirected graph
G = (V, E) with positive edge
weights.

Output: A subset of edges E' C E of
minimum total weight such that

the graph (V, E’) is connected.

Remark

The set E’ always forms a tree.

Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.

Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.

m A tree on n vertices has n — 1 edges.

Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.

m A tree on n vertices has n — 1 edges.

m Any connected undirected graph

G(V,E) with |[E| = |V| —1is a tree.

Properties of Trees

m A tree is an undirected graph that is
connected and acyclic.

m A tree on n vertices has n — 1 edges.

m Any connected undirected graph
G(V,E) with |[E| = |V| —1is a tree.

m An undirected graph is a tree iff there is
a unique path between any pair of its
vertices.

Outline

@ Greedy Algorithms

This lesson

Two efficient greedy algorithms for the

minimum spanning tree problem.

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

4 ~ 8

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

4 ~ 8

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the

current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the

current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the

current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the

current tree by a
lightest edge

Kruskal's algorithm

repeatedly add the
next lightest edge if
this doesn't produce a
cycle

Prim's algorithm

repeatedly attach a
new vertex to the

current tree by a
lightest edge

Outline

® Cut Property

Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

graph G

Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

subset X C E of some MST

Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

partition of V into S and V — S

Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

lightest edge e between S and V — §

Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

cut property states that X + {e} is also a part of
some MST

Cut property

Let X C E be a part of a MST of G(V,E), SC V
be such that no edge of X crosses between S and
V — S, and e € E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

cut property states that X + {e} is also a part of
some MST

Proof

graph G

Proof

subset X C E of some MST T

Proof

partition of V into Sand V —§

lightest edge e between S and V — §

we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e € T then there is nothing to prove; so
assume that e ¢ T

consider the tree T

adding e to T creates a cycle; let € be an
edge of this cycle that crosses S and V — §

Proof

then 7" = T — {€'} + {e} isan MST
containing X + {e}: itis a tree, and
w(T") < w(T) since w(e) < w(e)

Outline

O Kruskal's Algorithm

Kruskal's Algorithm

m Algorithm: repeatedly add to X the next
lightest edge e that doesn't produce a
cycle

m At any point of time, the set X is a
forest, that is, a collection of trees

m The next edge e connects two different
trees—say, T1 and T,

m The edge e is the lightest between T,
and V — Ty, hence adding e is safe

Implementation Details

use disjoint sets data structure
initially, each vertex lies in a separate set

each set is the set of vertices of a
connected component

to check whether the current edge

{u, v} produces a cycle, we check
whether u and v belong to the same set

Example

Kruskal(G)

for all we V:
MakeSet(v)
X < empty set
sort the edges E by weight
for all {u,v} € E in non-decreasing
welght order:
if Find(u) # Find(v):
add {u,v} to X
Union(u, v)
return X

Running Time

m Sorting edges:

O(|Ellog|E[) = O(|E[log |V) =
O(2|E|log|V]) = O(|Elog |V])

m Processing edges:

2|E| - T(Find) + |V| - T(Union) =
O((IE|+|V])log|V]) = O(|E|log|V])

m Total running time: O(|E|log |V])

Outline

@ Prim’s Algorithm

Prim’s Algorithm

m X is always a subtree, grows by one
edge at each iteration

m we add a lightest edge between a vertex
of the tree and a vertex not in the tree

m very similar to Dijkstra’s algorithm

Example

Prim’s Algorithm
Prim(G)

for all we V:
cost[u] < oo, parent[u] < nil
pick any initial vertex up
cost[up] < 0
PrioQ <— MakeQueue(V) {priority is cost}
while PrioQ is not empty:
v < ExtractMin(PrioQ)
for all {v,z} € E:
if z € PrioQ and cost[z] > w(v, z):
cost[z] < w(v,z), parent[z] < v
ChangePriority(PrioQ, z, cost[z])

Running Time

m the running time is

|V|-T(ExtractMin)+|E|- T(ChangePriority)

Running Time

m the running time is

|V|-T(ExtractMin)+|E|- T(ChangePriority)

m for array-based implementation, the running

time is O(|V|?)

Running Time

m the running time is

|V|-T(ExtractMin)+|E|- T(ChangePriority)

m for array-based implementation, the running

time is O(|V|?)

m for binary heap-based implementation, the
running time is

O((IVI+ |E]) log |V]) = O(|Elog |V])

Kruskal:

Prim:

Summary

repeatedly add the next lightest
edge if this doesn't produce a cycle;
use disjoint sets to check whether
the current edge joins two vertices
from different components

repeatedly attach a new vertex to
the current tree by a lightest edge;
use priority queue to quickly find
the next lightest edge

	Building a Network
	Greedy Algorithms
	Cut Property
	Kruskal's Algorithm
	Prim's Algorithm

